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Abstract

In this paper, we studied the dynamic properties of predator-prey and scavenger three species
system by using ergodic invariant measures. Pengyu Ma. find the five points of dynamical
bifurcation of the stochastic model, which happened between extinction and survival of each
species. Environmental noise was added and proved by the fact that driving force produced by
environmental noise influence the system and it was find that system may extinct or partially
extinct. Here, we have analysed the stochastic bifurcation phenomena of the prey-predator with
scavenger system from the nature of dynamic bifurcation. The phase plots and time diagram
plotted for the different values of parameters. We have verified all the results by numerical
simulations.
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1 Introduction

Many researchers developedMathematical ecosystemmodels and studied the growth and de-
cay of the species in a confined region. First Mathematical biological model was studied by Lokta
[21] in 1925. After one year an other Mathematical biology model was introduced by Voltera
in 1926. After that many scientists and researchers worked on Mathematical biological and eco-
logical models [16, 17, 19], Wilson et al. [33] discovered a predator-prey model on Lion, zebra
and cheetah, impala. The model Dynamical analysis of Two-Preys and One Predator Interaction
Model with an Allee Effect on Predator [20] was developed on two prey species and one predator
and they studied how the population was affected by the used parameters. Gupta et al. [10] gave
the model on Scavenger, predator and prey with quadratic harvesting. The dynamical properties
were also analysed in model. Satar and Naji [30] gave the stability of predator-prey-scavenger
model with michaelis-menten type of harvesting function. In [6] Stochastic prey predator model
with additional food for predator was studied and analysed the behavior of the model.

Previte et al. [24] analyzed Period doubling cascades in a predator-prey model with a scav-
enger. In [2] author discussed the dynamics of a three species ratio dependent of food chainmodel
with intra specific competition with in the top predator. In other references [25, 15] Chaotic mea-
surement were also analysed. Rich Dynamics of a Predator-Prey system with different kinds of
functional responses [29] was studied for the various parameters.

Khajanchi et al. [18, 4] studied brain tumor and fuzzyHTLV-I infectionmodel. The brain tumor
model analysedwith Immune System interactions. In research paper [27] analysed the allee effect
relevant to stochastic cancer model. The researcher determined the very realistic results in model.
Sengupta et al. [31] explored the Stochastic non-autonomous holling type-III prey-predatormodel
with predator intra-specific competition.

In references [26, 6] stochastic thermodynamical and ecological model were studied. Samanta
et al. [23] analysed the dynamics of an additional food provided predator-prey system with prey
refuge dependent on both species and constant harvest in predator. An interesting model was
developed by Khajanchi et al. [28] on the effect of fear on growth rate of prey species. In model
researchers find that fearing of predator affect the population growth of prey.

Some researchers analysed that the relation between populations and the noise provided by
environment can improve or reduce the populations which already exist in system. So that the
systemmay coexist or partially extinct or extinct. In this paperwe studied and tried to give answers
for these questions. Here the predator-prey model with scavenger has the following form;

dx = x
(
r(1− x/K)− ay − bz − cαx− dx2

)
dt,

dy = y
(
eax− fy − gα− hy

)
dt,

dz = z
(
jbx+ ky − l −mα− nz

)
dt,

(1)

where x is prey and y is predator and z is scavenger. In the system, parameter r define the natural
growth rate of prey species, K the carrying capacity without predation harvesting and toxicant.
α is combined harvesting effort. a, b and k are predation and scavenge with positive maximum
attack rate. c, g andm are positive catch ability coefficients. d, h and n are coefficient of toxicity of
prey, predator and scavenger respectively. f and l are predator and scavenger decay with natural
death rates respectively. e and j are conversion rates of prey to predator and scavenger.
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2 Stochastic Form of System (1)

Many multi-species problems discussed without any biotic effect. But some biotic effect can
also affect the nature of the problem. Due to biotic effect, in some models, population may grow
very fast or go extinct. Mao et al. [22] the population dynamics analysed by adding environmental
brownian noise. Deng et al. [7] also discussed thatwhite noise directly can affect the population of
the species and growth or decay of the population may be exponentially. The principle of compet-
itive exclusion for a stochastic Lotka-Voltera model with super andmid level predators competing
for one prey is studied by Cao et al. [5], Gakkhar et al. [9] revealed dynamical behaviour of super
andmid level predators over a single prey. In other problem, Sun et al. [32] studied the dynamical
behavior of a stochastic two species monod competition chemostat model.

Fluctuation in the environmentmay cause a extent inmodel. We are studying the phenomenon
by using following stochastic predator-prey with scavenger model

dx =
(
rx(1− x/K)− axy − bxz − cαx− dx3

)
dt+ β1xdB1(t),

dy =
(
eaxy − fy − gαy − hy2

)
dt+ β2ydB2(t),

dz =
(
jbxz + kyz − lz −mαz − nz2

)
dt+ β3zdB3(t).

(2)

System (2) is developed for scavenger, mid level predator and prey species. In the system (2),B1,
B2 and B3 stand for independent standard brownian motions; β1, β2, and β3 are the intensities
of white noises. In our model we considered that the environmental change, mainly affect the
growth and death rate of the population. However, due to environmental effect the population
may go extinct. In our model we find, how the random factors influence the model? These things
show that noise, we are introducing can affect the system, and from these we also find how does
this white noise affect the mainly stochastic model (2.1). Mao et al. [22] described the population
model in which model they studied how the brownian noise effect the population and change
into the nature of the system. Some other stochastic population models [12, 14] developed and
studied by many researchers. In model we analysed, how environmental noise can improve the
biological populations or may decrease the populations or may be extinct the populations or it
may be coexist.

3 Important Invariant Sets for System (2)

In this model we will study how environmental noise affect the population and how it’s differ
from the biological population without noise. To study the dynamic properties of the population
model, we are using Lyapunov Characteristic Exponent of invariant measures on invariant sets.

Theorem 3.1. The solution process,

Z ≜ (x(t), y(t), z(t)),

of the stochastic system (2) of the population model is regular with initial value (x(0), y(0), z(0)). The
initial value lie in the invariant set S, where S ≜ {(x, y, z) | x > 0, y > 0, z > 0}.

Proof. The similar proof has been given in reference [37]. So that we are omitting the Proof.
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Remark 3.1. By using Theorem 3.1, S is a invariant set, which is three-dimensional. We get the following;

S1 = {(x, y, z) | x > 0, y > 0, z = 0},
S2 = {(x, y, z) | x > 0, y = 0, z > 0},
S3 = {(x, y, z) | x = 0, y > 0, z > 0},

invarient subsets. It is define that x(t) ≡ 0 when x(0)=0, y(t) ≡ 0 when y(0)=0 and z(t) ≡ 0 when
z(0)=0. Hence, following invariant subsets are

S1 = {(x, y, z) | x > 0, y = 0, z = 0},
S2 = {(x, y, z) | x = 0, y > 0, z = 0},
S3 = {(x, y, z) | x = 0, y = 0, z > 0},

and origin is a sub-invariant set for the given stochastic system (2). Hence, the system has S1, S2, S3, S1,
S2, S3, S and (0, 0, 0) invariant sub-sets for the invariant set S ≜ {(x, y, z) | x ≥ 0, y ≥ 0, z ≥ 0}. By
study we find that the sub-invariant sets S3, S2 and S3 are meaningless.

Theorem 3.2. We can easily prove, the sets S3, S2, S3 are meaningless. As we know no predator and
scavenger will survive without prey.

Proof. We are using Theorems 1.1 and 1.3, given in reference [12] to study stochastic system (2).
Here, we also used Theorem 1.4 that given in reference [12]. We take the system (2) on the 2-
dimensional boundary set S4 = {(x, y, z) | x = 0, y ≥ 0, z ≥ 0}. Let µ(.) be the dirac measure at
(0,0,0), hence, themeasure µ(.) is a probabilistic ergodic invariant. The first and second Lyapunov
exponent of measure µ(.) are computed as,

v1(µ) =

∫
(0,0,0)

(
(r(1− x/K)− ay − bz − cα− dx2)− β2

1

2

)
µ(dxdydz) = r − cα− β2

1

2
,

v2(µ) =

∫
(0,0,0)

(
eax− f − gαy − hy − β2

2

2

)
µ(dxdydz) = −f − gα− β2

2

2
,

v3(µ) =

∫
(0,0,0)

(
jbx+ ky − l −mα− nz − β2

2

2

)
µ(dxdydz) = −l −mα− β2

3

2
,

where v1(µ) and v2(µ) are first and second Lyapunov exponents of measure µ. Since v1(µ) and
v2(µ) both are less than zero therefore µ(.) only measure on S4. It gives us the predator and
scavenger will go extinct without prey. Hence S3 is useless invariant set similarly we can show
that the invariant sets S2 and S3 are not useful.

Corollary 3.1. For any real q > 0, and initial value Z(0) ∈ S, the stochastic process Z(t) of system (2)
satisfied,

lim
t→∞

supE | Z(t) |q ≤ C1,

where C1 is a constant which must be positive.

4 LCE for Ergodic Measures on Invariant Subsets

Here, we are considering the system (2) on the first-dimensional boundary
S1
0 = {(x, y, z) | x ≥ 0, y = 0, z = 0} or

dx = (rx(1− x/K)− cαx− dx3)dt+ β1xdB1(t). (3)
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Corollary 4.1. The reference [14], for system (4.1) provides limt→∞ x(t) = 0 when β2
1 ≥ 2r and from

the reference [8], we can write the system has a unique distribution µ1(.) with density function f(x) when
β2
1 ≤ 2r, where,

f(x) =
βκxκ−1e−βx

Γκ
, x > 0, β > 0, κ > 0.

Where β =
2r

Kβ2
1

and κ =
2(r − cα)

β2
1

− 1. For the system (2), if v1(µ) = r − cα − β2
1

2
< 0, therefore,

the Lyapunov exponent of invariant measure µ(.) is less than zero, hence there is a invariant measure µ(.)
on S. For v1(µ) > 0, there is an other invariant measure µ1(.) on S1. We know that the measure µ(.) is
not stable and measure µ1(.) can be defined as a boundary measure on δS. Here, we are not making any
difference between them and the difference is depend on the conditions.

Theorem 4.1. For the boundary measureµ1(.), the Lyapunov exponents are v1(µ1) = 0.

v2(µ1) = −f − gα− β2
2

2
+ ae

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx,

v3(µ1) = −l −mα− β2
3

2
+ jb

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx.

Proof. From the reference [12], the Lemma 2.1 shows v1(µ1) = 0. The rest measures v2(µ1) and
v3(µ1) can be calculate easily. So we are omitting proof.

Let v1(µ) > 0 and v2(µ1) > 0. Then there is probability measure which is ergodic invariant µ12

on S1. Therefore the 2-dimensional boundary system will become,

dx = (rx(1− x/K)− axy − bxz − cαx− dx3)dt+ β1xdB1(t),

dy = (eaxy − fy − gαy − hy2)dt+ β2ydB2(t).
(4)

From reference [12], Lemma 2.1 shows v1(µ12) = 0 and v2(µ12) = 0, For the measure µ12 the
Lyapunov exponent can be computed as,

v3(µ12) = −l −mα− β2
3

2
+

∫
S1

(jbx+ ky)µ12 (dx, dy).

In samemanner we have an measure µ13 on S2, which is ergodic. When v1(µ) > 0 and v3(µ1) > 0,
then the 2-dimensional boundary system will become

dx = (rx(1− x/K)− bxz − cαx− dx3)dt+ β1xdB1(t),

dz = (jbxz +−lz −mαz − nz2)dt+ β3zdB3(t).
(5)

Here, we have v1(µ13 = 0) and v3(µ13) = 0 and

v2(µ13) = −f − gα− β2
2

2
+ ae

∫
S2

(xae)µ13 (dx, dz).

5 Stochastic Extinction and Persistence

The basic definition of the strong stochastic persistence has been defined from the reference
[36, 12] for system (2) as we can see below.
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Definition 5.1. Let Z(t) be stochastic process and the stochastic process will be persist if transition proba-
bility Z(t) converge to ν(.) and the process has an invariant probability measure ν(.). We are denoting

Ψt(.) =
1

t

∫ t

0

1{z(t)ϵ}ds, t > 0,

as a normalized random measure for the stochastic process Z(t). Suppose,

M = {µ(.), µ1(.), µ12(.), µ13(.)},

where the elements of M are ergodic invariant probability measures of Z(t). For the system (2), reference
[12] provide the following stability theorem.

Theorem 5.1. For any η belong into M we have the following;

(i) Ifmaxi=1,2,3 vi(η) > 0, then the measure η(.) is unstable.

(ii) Ifmaxi=1,2,3{vi(µ)} < 0 then the dirac measure µ(.) is stable.

(iii) If µ1(.), ifmaxi=2,3 vi(µ1) < 0, then one-dimensional measure µ1 is stable.

(iv) If v3(µ12) < 0 and maxi=1,2{vi(µ)} > 0 then two-dimensional measure µ12 is stable.

(v) If v2(µ13) < 0 and maxi=1,3{vi(µ)} > 0 then two-dimensional measure µ13(.) is stable.

For stability of the measure η(.). the limit of Ψt(.) is {η(.)} definitely and

lim
t→∞

logZi(t)

t
= vi(η).

Theorem 5.2. Let v1(µ) < 0. Therefore all the species x(t), y(t) and z(t) definitely will converge to zero,
it shows that the system (2) will be extinct.

Proof. We have v2(µ) = −f − gα− β2
2

2
< 0 and v3(µ) = −l −mα− β2

3

2
< 0, then

maxi=1,2,3{vi(µ)} < 0 when v1(µ) < 0, this gives the measure µ(.) is stable and

lim
t→∞

logZi(t)

t
= vi(µ) < 0.

Here the values of i are 1, 2 and 3 respectively. Therefore, the species x(t), y(t) and z(t) definitely
will converges to zero and the system (2) will be extinct.

Theorem 5.3. Let v1(µ) > 0. Therefore the dynamical properties for the system are obtained by v2(µ1)
and v3(µ1). Hence we can divide these properties it into three cases:

(i) For v2(µ1) < 0 and v3(µ1) < 0, The species y and z will be extinct.

(ii) For v2(µ1) > 0 and v3(µ1) < 0, the species z will extinct.

(iii) For v2(µ1) < 0 and v3(µ1) > 0, the species y will extinct.

Proof. From reference [37] the results easily can be verified, hence we are omitting the proof.

Theorem 5.4. If v1(µ) > 0, v2(µ1) > 0 and v3(µ1) > 0, then there are following four cases arise;
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(i) For v2(µ13) and v3(µ12) are less than zero, the randomized measure converges to measure µ12(.) and
µ13 with probability p1 and p2 respectively. Here the convergence defined for randomized measure is
weak convergence. Suppose,

p1 = P{Ψ(.) → µ12(.)},
p2 = P{Ψ(.) → µ13(.)},

where p1, p2 > 0 and p1 + p2 = 1.

(ii) For v2(µ13) is greater than zero and v3(µ12) is less than zero, the species z(t) definitely converges to
zero and the randomized measure converges to the measure µ12(.). Here, the convergence is the weak
convergence.

(iii) For v2(µ13) is less than zero and v3(µ12) is greater than zero, the species y(t) definitely will converge
to zero and the randomized measure converges to measure µ13(.).

(iv) For v2(µ13) and v3(µ12) are greater than zero, so that there will be a invariant probability measure
ν(.) on S.

Proof. It is given that maxi=1,2,3{vi(µ)} > 0 and v1(µ) > 0, therefore the dirac measure µ(.) is not
stable. In samemannermaxi=1,2,3{vi(µ1)} > 0, since v2(µ1) and v3(µ1) are greater than zero, then
measure µ1(.) is not stable.

(i) If v2(µ13) < 0 and v3(µ12) < 0, then results we find from Theorem 1.3 in reference [12].
Since M1 = {µ12(.), µ13(.)}.

(ii) If v2(µ13) > 0 and v3(µ12) < 0, then maxi=1,2,3{vi(µ13)} > 0. Hence measure µ13(.) is not
stable and measure µ12(.) is stable and

lim
t→∞

logZ3(t)

t
= v3(µ12) < 0.

This implies the randomized measure converges to measure µ12(.) and z(t) definitely con-
verges to zero .

(iii) If v2(µ13) > 0 and v3(µ12) > 0, we can prove it similarly aswhen v2(µ13) > 0 and v3(µ12) < 0,
therefore we are omitting the proof.

(iv) For v2(µ13) > 0 and v3(µ12) > 0, a boundarymeasure χ(.) on boundary δS is χ(.) = k1µ(.)+
k2µ1(.) + k3µ12(.) + k4µ13(.)with k1 + k2 + k3 + k4 = 1 and k1, k2, k3, k3 ≥ 0. It is the linear
combination of µ(.), µ1(.), µ12(.) and µ13(.).

This simply prove that maximum value of {vi(χ)} for all i = 1, 2, 3 is greater than zero for χ(.). So
that anymeasure on δS is not stable and it produce a invariant measure ν(.). Therefore the system
(2) is stochastically tenacious.

6 Biological Importance and Stochastic Bifurcations for Bifurcation Points

From reference [38] we find that there are dynamical and phenomenon approach for the re-
search in stochastic bifurcations. Phenomenon approachmeasure the qualitative change. Through
the dynamical approach we study the stability of invariant measure, it is explained in reference
[3]. Here, in this paper we are using dynamical approach to study the stochastic system (2).
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Theorem 6.1. v1(µ),v2(µ1), v3(µ1), v2(µ13) and v3(µ12) are dynamical bifurcation point for system (2).

Proof. Here, we are giving importance and explanation of these dynamical bifurcation point;

(i) v1(µ). Stability of measure µ(.) defined from value of v1(µ), If v1(µ) > 0 the measure will
be stable. However, If v1(µ) < 0, then measure will not be stable and another new measure
come into effect.

(ii) v2(µ1). For v1(µ) > 0 and v3(µ1) < 0. The stability of measure µ1(.) can be define from the
nature of v2(µ1). If v2(µ1) < 0, the measure µ1(.)will be stable. However, if v2(µ1) < 0 then,
the measure will be unstable and another new measure come into effect.

(iii) v3(µ1). For v1(µ) > 0 and v2(µ1) < 0. The stability of measure µ1(.) find as if v3(µ1) < 0
then measure will be stable. However v3(µ1) > 0, then measure will be unstable and a new
measure µ13(.) generates by the system.

(iv) v3(µ12). For v1(µ) > 0, v2(µ1) > 0, v3(µ1) > 0 and v2(µ13) > 0. The boundary measure
µ12(.) will be stable for v3(µ12) < 0 and for v3(µ12) > 0, the measure will be unstable and a
new measure ν(.) generates by system which is also stable.

(v) v2(µ13). For v1(µ) > 0, v2(µ1) > 0, v3(µ1) > 0 and v3(µ12) > 0. The measure µ13(.) will be
stable for v2(µ13) < 0. However, If v2(µ13) > 0 , the measure µ13(.) will be unstable and a
new invariant measure ν(.) come into effect which is stable.

We studied and find all five bifurcation point has biological importance.

Extinction and survivability of species

(i) The value of v1(µ) tell us about the survival and extinction of the prey for v1(µ) > 0, prey
will survive and for v1(µ) < 0, the prey will extinct.

(ii) Survivability and extinction of predator y can be determine by using the value of v2(µ13). If
it’s positive and not equal to zero then predator y will survive on other way if it’s value less
than zero the species y will be extinct. However, if v2(µ13) does not exist then v2(µ1) use to
determine the survivability and extinction of predator z.

(iii) Survivability and extinction of scavenger z can be determine by using the value of v3(µ12).
If it’s positive and not equal to zero then scavenger z will survive on other way if it’s value
less than zero the species z will be extinct. However, if v2(µ13) does not exist then v3(µ1) use
to determine the survivability and extinction of species z.

Extinction and survivability of system

(i) v1(µ) has important role to describe the system, the system will survive or extinct, we de-
termine from the v1(µ). If v1(µ) has non zero positive value then at least one species will
survive. However, if v1(µ) < 0, then system will extinct.

(ii) On Other way ifmin{v2(µ13, v3(µ12))} has non zero positive value, then at least one species
will survive. However, Ifmin{v2(µ13, v3(µ12))} < 0, then system will extinct.
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7 Finite Difference Technique for Numerical Simulation

We are using technique, the technique used in literature [13] for the numerical simulation, the
following system of equations we get,

xi+1 = xi +
[
rxi(1− xi/K)− axiyi − bxizi − cαxi − dx3i

]
△ t

+ β1xi
√
△tξi +

β2
1

2
x2i (△tξ2i −△t),

yi+1 = yi +
[
eaxiyi − fyi − gαyi − hy2i

]
△ t

+ β2yi
√

△tηi +
β2
2

2
y2i (△tη2i −△t),

zi+1 = zi +
[
jbxizi + kyizi − lzi −mαzi − nz2i

]
△ t

+ β3zi
√

△tψi +
β2
3

2
z2i (△tψ2

i −△t),

(6)

where, in system (6) ξi, ηi and ψi are gaussian stochastic variables, whose values are lie inN(0, 1).
We are verifying the theoretical results by the numerical simulation. From the graphics we can
easily understand the system’s dynamical properties. We used some literature for numerical sim-
ulations and evaluations. We used literature [11, 35] to derive natural mortality rates, conversion
coefficients and so on. White noises’s intensities derived from literatures [38, 34].

Conditions given in Theorems 4.1, 5.1, 5.2 and 5.3 are verified by some examples. We compute
the Lyapunov exponents for ergodic invariant probability measures. We didn’t get any idea about
the v2(µ13) and v3(µ12). We are using finite difference methods for the numerical simulations
and compute the Lyapunov exponents for the different measures. We summarized the numerical
simulation in following steps;

(i) The number of point N, which are using for simulation.

(ii) Compute the step length for the data which we have taken in step one.

(iii) Nkj represents the data’s number in a grid.

(iv) Lyapunov exponents for all the measures, computed by the approximation of the density
functions.

The Lyapunov exponents for measures v2(µ13) and v3(µ12) are computed in following examples;

Example 7.1. Let r = 0.1, K = 18, a = 0.52, b = 0.45, k = 0.35, c = 0.11, g = 0.31, m = 0.21,
α = 0.40, f = 0.40, l = 0.32, e = 0.85, j = 0.20, d = 0.50, h = 1, n = .20β1 = 0.95, β2 = .87,
β3 = .75. Then we have

v1(µ) = r − cα− β2
1

2
= −0.39525 < 0.

From Theorem 5.2, we find that the system (2) goes extinct. Figure 1 and Figure 2 show the
numerical simulations of Example 7.1. Figure 1 shows system (2) goes extinctwith time and phase
space shown in Figure 2.
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Figure 1: The time plot of Example 7.1 shows the system is extinct.

Figure 2: The phase plot of Example 7.1 shows the convergence of measure µ(.) on (0,0,0).
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Example 7.2. Let r = 2, K = 18, a = 0.52, b = 0.45, k = 0.35, c = 0.11, g = 0.31, m = 0.21,
α = 0.40, f = 0.40, l = 0.32, e = 0.85, j = 0.20, d = 0.50, h = 1, n = 0.20β1 = 0.95, β2 = 0.87,
β3 = 0.75. Then we have

v1(µ) = r − cα− β2
1

2
= 1.050475 > 0,

v2(µ1) = −f − gα− β2
2

2
+ ae

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx = −0.979318 < 0,

v3(µ1) = −l −mα− β2
3

2
+ jb

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx = −0.700901 < 0.

By using Theorem 5.3, we findΨ(t) converges to measure µ1(.), and y, z species definitely goes
extinct. Figure 3 shows path of the system changewith the time t and phase space shown in Figure
4.
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Figure 3: The time plot of Example 7.2 shows species x persist and species y, z are extinct.
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Figure 4: The phase plot of Example 7.2 shows the convergence of Ψ(t) to the measure µ1(.).

Example 7.3. Let r = 9, K = 18, a = 0.52, b = 0.45, k = 0.35, c = 0.11, g = 0.31, m = 0.21,
α = 0.40, f = 0.40, l = 0.32, e = 0.85, j = 0.20, d = 0.50, h = 1, n = 0.20, β1 = .95, β2 = 0.07,
β3 = 0.75. Then we have

v1(µ) = r − cα− β2
1

2
= 8.50475 > 0,

v2(µ1) = −f − gα− β2
2

2
+ ae

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx = 0.01025 > 0,

v3(µ1) = −l −mα− β2
3

2
+ jb

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx = −0.68476 < 0.

By using Theorem 5.3, we find that Ψ(t) converges to µ12(.), and species z definitely goes ex-
tinct. Figure 5 shows system’s path change with the time t and Figure 6 shows the phase space.
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Figure 5: The time plot of Example 7.3 shows the species x and y are persist and species z is extinct.

Figure 6: The phase plot of the Example 7.3 shows the convergence of Ψ(t) to measure µ12(.) on S1.
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Example 7.4. Let r = 10, K = 18, a = 0.12, b = 0.99, k = 0.35, c = 0.11, g = 0.31, m = 0.21,
α = 0.40, f = 0.40, l = 0.32, e = 0.85, j = 0.20, d = 0.30, h = .99, n = .20, β1 = .65, β2 = 0.77,
β3 = 0.05. Then we have

v1(µ) = r − cα− β2
1

2
= 9.74475 > 0,

v2(µ1) = −f − gα− β2
2

2
+ ae

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx = −0.816923 < 0,

v3(µ1) = −l −mα− β2
3

2
+ jb

∫ ∞

0

x
βκxκ−1e−βx

Γκ
dx = 0.11304 > 0.

By using Theorem 5.3, we find thatΨ(t) converges to µ13, and species y definitely goes extinct.
Figure 7 shows system’s path change with the time t and Figure 8 shows the phase space.
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Figure 7: The time plot of Example 7.4 shows x and z are persist and y is extinct.
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Figure 8: The phase plot of Example 7.4,shows the convergence of Ψ(t) to boundary measure µ13(.) on S2.

8 Discussions and Conclusions

A deterministic was model studied in reference [1] with six equilibrium points p0, p1, p2, p3, p4
and p5. In thismodel we have studied µ(.), µ1(.), µ12(.), µ13(.) and ν(.) ergodic invariantmeasures.
We consider that the equilibrium point and ergodic invariant measure related as follows:

(i) On invariant set {0, 0, 0}, p0 is equivalent to measure µ(.).

(ii) On invariant set S1, p1 equivalent to measure µ1(.).

(iii) Since the set S3 has no meaning, therefore p2 has no equivalent set.

(iv) On invariant set S1, p3 is equivalent to measure µ12(.).

(v) On invariant set S2, p4 is equivalent to measure µ13(.).

(vi) On invariant set S, p5 is equivalent to measure ν(.).

We studied and compared stochastic and deterministic models and analyzed their stability.
We also studied how environmental noise affect the survivability? From reference [1] find the
equilibrium point p0 is not stable in the model. But measure µ(.) is stable for v1(µ) < 0 in our
stochastic model. If white noise β1 is enough large, the equilibrium point p0 may stable.

Thus, we get the idea that driving force which is produced by environment affect the system
and it could system to extinction from partial extinction. From this we find the significance of
drive force which is caused by environment. Asymptotically stable equilibrium points p2 which
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is unconditional for the model from the literature [1], the equilibrium points p2 is locally stable.
Hence, it can not be globally stable. In our stochastic model the invariant subset S3 is meaningless.

Under some certain conditions the equilibrium points p1, p3, p4 and p5 may globally asymptoti-
cally stable inmodel (1.1). In samemanner the ergodic invariant measures µ1(.), µ12(.), µ13(.) and
ν(.) are for stochastic model (2) under some certain conditions. Hence we find that that stochastic
model also possesses the properties of deterministic model. We studied and find that the surviv-
ability of the system depend on dynamic bifurcation points. The parameters which are we using
in the system may affect the dynamic bifurcation points. Apart from this we also find that envi-
ronmental noise, intrinsic growth and competition coefficients affect the system. The motivation
of the paper is that we can apply some restrictions on scavenger or some special kinds of scavenger
to use for the further study of the model.
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